If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-6000=0
a = 1; b = -20; c = -6000;
Δ = b2-4ac
Δ = -202-4·1·(-6000)
Δ = 24400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24400}=\sqrt{400*61}=\sqrt{400}*\sqrt{61}=20\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{61}}{2*1}=\frac{20-20\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{61}}{2*1}=\frac{20+20\sqrt{61}}{2} $
| 1/3m+m=120 | | X=5(180-x)-480 | | 3c+9=17 | | 3/n=35 | | 2=r+1/2 | | -5=n/3-1 | | 2+3=6+x | | 1=10+v/27 | | 21=u/3+14 | | 2+9k=-70 | | 55=8n | | r+3/18=1 | | -8n-2=134 | | 19b=95 | | 4s=31 | | 7/8d+16=16 | | 14t+25=9t+80 | | 9t+24=5t+40 | | 55t+500=30t+650 | | -5x-(-10)=25 | | Y=-10x+800 | | 14+p=17 | | 41+a=39 | | x+95=57 | | 9=n+26 | | 7.437x=6.6x | | x+88=170 | | 70=33+k | | 5(a-2)-3(a-4)=16 | | 84/x+11=14 | | 4x+17=2x-43 | | (1.1)^n=1.100274 |